Fisica Cuántica

En física, la mecánica cuántica (conocida también como mecánica ondulatoria en alguna de sus interpretaciones) es una de las ramas principales de la física que explica el comportamiento de la materia y de la energía. Su campo de aplicación pretende ser universal (salvando las dificultades), pero es en el mundo de lo pequeño donde sus predicciones divergen radicalmente de la llamada física clásica.

 

De forma específica, se considera también mecánica cuántica, a la parte de ella misma que no incorpora la relatividad en su formalismo, tan sólo como añadido mediante teoría de perturbaciones. La parte de la mecánica cuántica que sí incorpora elementos relativistas de manera formal y con diversos problemas, es la mecánica cuántica relativista o ya, de forma más exacta y potente, la teoría cuántica de campos (que incluye a su vez a la electrodinámica cuántica, cromodinámica y teoría electrodébil dentro del modelo estándar) y más generalmente, la teoría cuántica de campos en espacio-tiempo curvo. La única interacción que no se ha podido cuántificar ha sido la interacción gravitatoria. 
La mecánica cuántica es la base de los estudios del átomo, los núcleos y las partículas elementales (siendo ya necesario el tratamiento relativista) pero también en teoría de la información, criptografía y química.

La mecánica cuántica es la última de las grandes ramas de la física. Comienza a principios del siglo XX, en el momento en que dos de las teorías que intentaban explicar lo que nos rodea, la ley de gravitación universal y la teoría electromagnética clásica, se volvían insuficientes para explicar ciertos fenómenos. La teoría electromagnética generaba un problema cuando intentaba explicar la emisión de radiación de cualquier objeto en equilibrio, llamada radiación térmica, que es la que proviene de la vibración microscópica de las partículas que lo componen. Pues bien, usando las ecuaciones de la electrodinámica clásica, la energía que emitía esta radiación térmica daba infinito si se suman todas las frecuencias que emitía el objeto, con ilógico resultado para los físicos.
Es en el seno de la mecánica estadística donde nacen las ideas cuánticas en 1900. Louis de Broglie propuso que cada partícula material tiene una longitud de onda, asociada inversamente proporcional a su masa, (le llamó momentum), y dada por su velocidad. Al físico Max Planck se le ocurrió un truco matemático: que si en el proceso aritmético se sustituía la integral de esas frecuencias por una suma no continua se dejaba de obtener un infinito como resultado, con lo que eliminaba el problema y, además, el resultado obtenido concordaba con lo que después era medido. Fue Max Planck quién entonces enunció la hipótesis de que la radiación electromagnética es absorbida y emitida por la materia en forma de cuantos de luz o fotones de energía mediante una constante estadística, que se denominó constante de Planck. Su historia es inherente al siglo XX, ya que la primera formulación cuántica de un fenómeno fue dada a conocer el 14 de diciembre de 1900 en una sesión de la Sociedad Física de la Academia de Ciencias de Berlín por el científico alemán Max Planck.

 

 

La idea de Planck hubiera quedado muchos años sólo como hipótesis si Albert Einstein no la hubiera retomado, proponiendo que la luz, en ciertas circunstancias, se comporta como partículas independientes de energía (los cuantos de luz o fotones). Fue Albert Einstein quién completó en 1905 las correspondientes leyes de movimiento con lo que se conoce como teoría especial de la relatividad, demostrando que el electromagnetismo era una teoría esencialmente no mecánica. Culminaba así lo que se ha dado en llamar física clásica, es decir, la física no-cuántica. Usó este punto de vista llamado por él “heurístico”, para desarrollar su teoría del efecto fotoeléctrico. Publicó esta hipótesis en 1905 y le valió el Premio Nobel de 1921. Esta hipótesis fue aplicada también para proponer una teoría sobre el calor específico, es decir la que resuelve cual es la cantidad de calor necesaria para aumentar en una unidad la temperatura de la unidad de masa de un cuerpo.

Las velocidades de las partículas constituyentes no deben ser muy altas, o próximas a la velocidad de la luz.
La mecánica cuántica rompe con cualquier paradigma de la física hasta ese momento, con ella se descubre que el mundo atómico no se comporta como esperaríamos. Los conceptos de incertidumbre, indeterminación o cuantización son introducidos por primera vez aquí. Además la mecánica cuántica es la teoría científica que ha proporcionado las predicciones experimentales más exactas hasta el momento, a pesar de estar sujeta a las probabilidades.

 

 

La teoría cuántica fue desarrollada en su forma básica a lo largo de la primera mitad del siglo XX. El hecho de que la energía se intercambie de forma discreta se puso de relieve por hechos experimentales como los siguientes, inexplicables con las herramientas teóricas “anteriores” de la mecánica clásica o la electrodinámica:

Espectro de la radiación del cuerpo negro, resuelto por Max Planck con la cuantización de la energía. La energía total del cuerpo negro resultó que tomaba valores discretos más que continuos. Este fenómeno se llamó cuantización, y los intervalos posibles más pequeños entre los valores discretos son llamados quanta (singular: quantum, de la palabra latina para “cantidad”, de ahí el nombre de mecánica cuántica). El tamaño de un cuanto es un valor fijo llamado constante de Planck, y que vale: 6.626 ×10-34: julios por segundo.

Bajo ciertas condiciones experimentales, los objetos microscópicos como los átomos o los electrones exhiben un comportamiento ondulatorio, como en la interferencia. Bajo otras condiciones, las mismas especies de objetos exhiben un comportamiento corpuscular, de partícula, (“partícula” quiere decir un objeto que puede ser localizado en una región especial del Espacio), como en la dispersión de partículas. Este fenómeno se conoce como dualidad onda-partícula.

Las propiedades físicas de objetos con historias relacionadas pueden ser correlacionadas en una amplitud prohibida por cualquier teoría clásica, en una amplitud tal que sólo pueden ser descritos con precisión si nos referimos a ambos a la vez. Este fenómeno es llamado entrelazamiento cuántico y la desigualdad de Bell describe su diferencia con la correlación ordinaria. Las medidas de las violaciones de la desigualdad de Bell fueron de las mayores comprobaciones de la mecánica cuántica.
Explicación del efecto fotoeléctrico, dada por Albert Einstein, en que volvió a aparecer esa “misteriosa” necesidad de cuantizar la energía.
Efecto Compton.

El desarrollo formal de la teoría fue obra de los esfuerzos conjuntos de varios físicos y matemáticos de la época como Schrödinger, Heisenberg, Einstein, Dirac, Bohr y Von Neumann entre otros (la lista es larga). Algunos de los aspectos fundamentales de la teoría están siendo aún estudiados activamente. La mecánica cuántica ha sido también adoptada como la teoría subyacente a muchos campos de la física y la química, incluyendo la física de la materia condensada, la química cuántica y la física de partículas.

La región de origen de la mecánica cuántica puede localizarse en la Europa central, en Alemania y Austria, y en el contexto histórico del primer tercio del siglo XX.
El mundo moderno de la física se funda notablemente en dos teorías principales, la relatividad general y la mecánica cuántica, aunque ambas teorías parecen contradecirse mutuamente. Los postulados que definen la teoría de la relatividad de Einstein y la teoría del quántum están incuestionablemente apoyados por rigurosa y repetida evidencia empírica. Sin embargo, ambas se resisten a ser incorporadas dentro de un mismo modelo coherente.

El mismo Einstein es conocido por haber rechazado algunas de las demandas de la mecánica cuántica. A pesar de ser claramente inventivo en su campo, Einstein no aceptó la interpretación ortodoxa de la mecánica cuántica tales como la aserción de que una sola partícula subatómica puede ocupar numerosos espacios al mismo tiempo. Einstein tampoco aceptó las consecuencias de entrelazamiento cuántico aún más exóticas de la paradoja de Einstein-Podolsky-Rosen (o EPR), la cual demuestra que medir el estado de una partícula puede instantáneamente cambiar el estado de su socio enlazado, aunque las dos partículas pueden estar a una distancia arbitraria. Sin embargo, este efecto no viola la causalidad, puesto que no hay transferencia posible de información. De hecho, existen teorías cuánticas que incorporan a la relatividad especial -por ejemplo, la electrodinámica cuántica, la cual es actualmente la teoría física menos comprobada- y éstas se encuentran en el mismo riñon de la física moderna de partículas.

¿Por qué cuántica?

Einstein dio una buena explicación y analogía con la vida real acerca del significado de la palabra cuántica y cuantos. En su libro “La física, aventura del pensamiento” dice que por ejemplo en una mina de carbón la producción puede variar en un modo continuo, si aceptamos cualquier unidad de medida por mas pequeña que sea. Es decir podríamos decir que se produjo 1 granito mas de carbón que ayer. Lo que no podemos hacer es expresar la variación de personal en forma continua, no tiene sentido hablar de que se aumento el personal en 1,80 personas, es decir la medida de la cantidad de personal es discreta y no continua. Otro ejemplo, una suma de dinero solo puede variar de a saltos, discontinuamente. La unidad mínima para el dinero es el centavo. Decimos entonces que ciertas magnitudes cambian de una manera continua y otras de una manera discontinua o discreta, o sea por cantidades elementales o pasos que no pueden reducirse indefinidamente. A estos pasos mínimos e indivisibles, se los llama cuantos elementales de la magnitud en cuestión. Es evidente que al aumentar la precisión de cómo se realizan las medidas de cualquier tipo de magnitud, unidades que se consideraban indivisibles dejen de serlo y adoptan un valor aun menor. O sea ciertas magnitudes que se consideran continuas pueden tener una naturaleza discreta.

 

 

En física, ciertas magnitudes consideradas por muchos años como continuas, en realidad están compuestas de cuantos elementales. La energía es una de estas magnitudes que al estudiar los fenómenos del mundo de los átomos, se detecto que su naturaleza no era continua sino discreta y que existe una unidad mínima o cuanto elemental de energía. Este fue el descubrimiento de Max Planck con el que se inicia la teoría cuántica.

Cuanto o quantum utilizado como un sustantivo se refiere a la cantidad más pequeña de algo que es posible tener. En el mundo de la física clásica existe el concepto de que todos los parámetros físicos como por ejemplo la energía, la velocidad, la distancia recorrida por un objeto, son continuos. Para entender que es esto de continuos, pensemos en el termómetro que mide la temperatura, cuando vemos que la misma aumenta en un grado en realidad aumento primero en una décima de grado y así siguiendo antes en una millonésima de grado etc., etc. Es decir el proceso de aumento de temperatura que medimos con el termómetro decimos que es continuo. Bien en el mundo de la física cuántica esto no es así, en concreto cuando Max Planck estudió como se producía la radiación desde un cuerpo incandescente, su explicación fue que los átomos que componen el cuerpo incandescente, cuando liberaban energía en forma de radiación, lo hacían no en forma continua, sino en pequeños bloques a los que él denominó cuantos de energía. Lo extraño de todo este proceso o de la explicación de Planck es que no existen posiciones intermedias, es decir no existen medios cuantos o un cuarto de cuanto. Es como si en el caso del termómetro no existiera la fracción de grado, simplemente la temperatura que está en 20º pasa de golpe a 21º. Decimos extraño porque lo que el sentido común indica es que la temperatura de un objeto aumenta cuando este recibe calor/energía; si el cuerpo está en 20º y le doy calor en una pequeña cantidad, no será suficiente para que aumente en un grado a 21º pero si para que algo aumente. En el mundo cuántico es como si esas pequeñas cantidades se van almacenando en algún lugar sin manifestarse de ninguna forma (sin aumento de temperatura del cuerpo), para que de repente cuando la cantidad de calor transmitida alcanzó un valor tal que el termómetro muestra ahora sí un aumento de 1º, marcando 21º. ¿qué pasó en el medio?. Bueno esto que si bien no ocurre en el caso de la temperatura sino que es solo una analogía para entender, es lo que efectivamente ocurre en el mundo cuántico. Todas las partículas que componen el universo físico se deben mover en saltos cuánticos. Un cuerpo no puede absorber o emitir energía luminosa en cualquier cantidad arbitraria sino solo como múltiplos enteros de una cantidad básica o cuanto. Volviendo a la extrañeza de estos fenómenos, imaginemos por un momento otra analogía: estamos arrojando piedras en un estanque de agua tranquilo. El sentido común dado por la experiencia que acumulamos en el tiempo nos dice que al hacer esto se producirán ondas en el estanque que son producto de la energía que la piedra transmitió al caer al agua. Un estanque cuántico, se comportaría de diferente forma, al arrojar una o varias piedras nada ocurrirá, y de repente sin que medie ninguna conexión entre la causa (arrojar piedras) y el efecto (se generan ondas en la superficie), el estanque comenzará a vibrar con ondas, hasta que de repente se tranquilizará nuevamente por mas que en ese momento estemos lanzando piedras. Si todas las piedras son del mismo tamaño, y arrojadas desde la misma altura, entregarán al caer la misma cantidad de energía al agua. Si dicha cantidad de energía resulta ser inferior al cuanto de energía, entonces debemos arrojar mas de una piedra para iniciar el movimiento.

 

 

Quiero recalcar la extrañeza de este fenómeno, llamando la atención sobre el hecho de que el cuanto no es una cantidad que pueda subdividirse, es decir, el concepto de continuidad pierde significación, entre 0 y el cuanto no existe nada. Son estados que la naturaleza no permite. Esta es la característica esencial del descubrimiento de Planck al estudiar los fenómenos llamado radiación del cuerpo negro (tema que se desarrollara mas adelante): existe un límite inferior al cambio de energía (absorción o emisión de energía en forma de luz) que un átomo puede experimentar.

LAS DIMENSIONES DEL MUNDO ATÓMICO Y SU RELACIÓN CON EL MACRO MUNDO

La física que estudia y explica los fenómenos que ocurren en el dominio de los átomos, de sus núcleos y de las partículas elementales se denomina cuántica; y la teoría matemática básica que explica los movimientos y relaciones en este campo se denomina mecánica cuántica. No se debe sin embargo pensar que la física cuántica no corresponde al mundo macroscópico, en realidad toda la física es cuántica; y las leyes de ésta tal como las conocemos hoy, constituyen nuestras leyes MÁS GENERALES de la naturaleza.

En el mundo macroscópico las leyes de la naturaleza que se han descubierto son las denominadas leyes de la física clásica; en estas se tratan aquellos aspectos de la naturaleza para los que la cuestión de cuál es la constitución última de la materia no es algo que importe en forma inmediata. Cuando aplicamos las leyes de la física clásica a los sistemas macroscópicos tratamos de describir solamente ciertos rasgos globales del comportamiento del sistema. Los detalles más finos del comportamiento del sistema se ignoran. En este sentido las leyes de la física clásica son leyes aproximadas de la naturaleza y debemos considerarlas como formas límite de las leyes de la física cuántica, más fundamentales y que abarcan mucho más. Las teorías clásicas son teorías fenomenológicas. Una teoría fenomenológica intenta descubrir y resumir hechos experimentales dentro de un cierto dominio limitado de la física. No se persigue describirlo todo en el reino de la física, pero si es una buena teoría fenomenológica, describirá de manera muy precisa cualquier aspecto dentro de aquel dominio limitado. En realidad toda teoría física es fenomenológica (trata de los fenómenos o eventos o hechos que ocurren).

Como decimos, las teorías clásicas no poseen validez universal, aunque son muy buenas teorías fenomenológicas, no lo dicen todo acerca de los cuerpos macroscópicos. Por ejemplo no podemos explicar por qué las densidades son lo que son, por qué las constantes elásticas de los materiales tienen los valores que tienen, por qué se rompe una barra cuando la sometemos a una tensión mas allá de cierto límite, por qué el cobre funde a 1083ºC, por qué el vapor de sodio emite luz amarilla, por qué brilla el sol, por qué el núcleo de uranio se desintegra espontáneamente, por qué la plata conduce la electricidad, por qué el azufre no conduce la electricidad; se podría seguir con muchos ejemplos de la vida cotidiana o que tienen cierto impacto en muchas de las cosas de esta vida cotidiana, acerca de los cuales la física clásica tiene poco o nada que decirnos.

El hombre siempre estuvo y sigue estando interesado en conocer o poder explicarse de donde salió y como funciona todo, y por eso investiga buscando saber si existe una teoría general de la materia. No tenemos hoy en día una teoría detallada para todo lo que ocurre en nuestro mundo, sin embargo y sobre todo en el siglo XX, es mucho lo que se avanzó, por ejemplo comprendiendo ahora muy bien los hechos de la química y las propiedades de la materia macroscópica; en estos dominios de la física se puede hoy responder a cuestiones que no podían resolverse dentro de la teoría clásica.

Podemos decir hoy que el modelo estándar de la física de las partículas, que se basa en las reglas de la mecánica cuántica, nos dice como está construido el mundo a partir de ciertos bloques fundamentales, que se mantienen unidos gracias al intercambio de energía en forma de partículas; pero no creamos que dicho modelo estándar es el definitivo ya que el ser humano a través de su inteligencia sigue en la búsqueda. Ahora yo me pregunto ¿Por qué sigue en la búsqueda? ¿Habrá algo innato, genético, incrustado en la naturaleza del hombre que lo lleva a esta búsqueda? ¿Será una llamada o un mensaje dejado por alguien? ¿Será la semejanza de un Dios creador que tenemos incorporada? Es muy probable que a nadie le interese esto como para dedicarle mas que una fracción de su tiempo; pero no podemos decir que sea cual fuere la duración de dicha fracción, si alcanzamos a percibir algo aunque sea a través del intellectus,  nos quedamos totalmente maravillados.

Cuando el físico Max Planck, estudió la radiación del cuerpo negro, que es un cuerpo incandescente, sacó su conclusión de que la energía era absorbida y emitida en cuantos de energía proporcionales a la frecuencia de la luz que se irradia. La constante de esta proporcionalidad es un numero, muy pero muy pequeño, del orden  de 10-34 esto es 0,000000000000000000000000000000001. Es bueno ahora tratar de tener una cierta sensibilidad para darnos cuenta lo lejos que están nuestras experiencias diarias de lo que denominamos mundo cuántico. Si existiera un terrón de azúcar de dicha dimensión en cm, necesitaríamos varios billones (exactamente 1034) de dichos objetos para cubrir la distancia de 1 cm. Veamos que es esto en nuestra realidad. Si tomáramos la misma cantidad de terrones de azúcar (1034) y los pusiéramos uno al lado del otro, cubrirían una distancia de 1000 millones de años luz. El mundo cuántico opera en una escala mucho menor que la relación existente entre la dimensión de un terrón de azúcar y la de todo el universo observable.

Detengámonos un momento en la dimensión de un átomo. Si aceptamos como modelo el de un núcleo y una “nube” externa de electrones, la dimensión del núcleo es de 10-13 cm y la de todo el átomo, o sea con la nube de electrones es 10-8 cm; para percibir la relación, si el núcleo fuera de 1 cm, la nube de los electrones más externos, estaría a una distancia de 105 cm esto es 1 Km.

Recorrido histórico

Entonces el mundo cuántico es el mundo de las partes más pequeñas que constituyen la materia, el micromundo, el mundo de las partículas subatómicas. La primer partícula subatómica que fue el electrón, recién fue descubierta en el año 1897. Los físicos de partículas han desarrollado modelos para comprender de qué están hechas las cosas y cómo las diferentes partes componentes interactúan entre sí. El modelo estándar de la física de las partículas, basado en las reglas de la mecánica cuántica, nos dice como el mundo está construido por pequeñísimos bloques fundamentales de quarks y leptones que se mantienen juntos por el intercambio de partículas denominadas gluones y bosones. Lamentablemente este modelo no incluye todo, por ejemplo no incluye el campo gravitatorio. La estructura de la física teórica en el siglo XX fue construida sobre dos grandes teorías, la Teoría general de la Relatividad, la cual describe la gravedad y el universo macro, y la Mecánica Cuántica que describe el micromundo. La unificación de ambas en una teoría que abarque todo es lo que los científicos en el siglo XXI están buscando, aún sin conseguirlo. No obstante esta búsqueda, cualquier teoría física mejorada incluirá la teoría cuántica, y ninguna de estas teorías podrá tal vez explicar la extrañeza del mundo cuántico, para los estándares utilizados en la vida diaria y el sentido común de las personas. La cuántica desafía al sentido común, o mejor dicho no tiene sentido a pesar de que explica con precisión insólita todos los fenómenos que ocurren en el mundo de las partículas subatómicas. Uno de los ejemplos clásicos es el fenómeno de la doble identidad de la luz, y de todas las partículas conocidas. Doble identidad dada por la identidad onda y la identidad partícula. J.J. Thompson abrió el micromundo a la investigación cuando descubrió el electrón como partícula. Tres décadas mas tarde, su hijo George Thompson probó que los electrones eran ondas. Ambos estaban en lo cierto y ambos ganaron el premio Nobel por sus investigaciones. Un electrón entonces es una partícula y también es una onda, o mejor dicho, no es ni una cosa ni la otra sino que es una entidad cuántica que responde a determinados experimentos comportándose como una onda y a otros experimentos de otras características comportándose como una partícula. Lo mismo pasa con la luz, que se puede comportar como un haz de partículas denominadas fotones o como un conjunto de ondas de diferentes longitudes de onda, según sean las circunstancias. Por cierto la luz es ambas cosas, a pesar de que no se manifiesta claramente así en nuestra vida diaria, razón por la cual no consideramos las consecuencias de esta doble identidad como algo claro para nuestro sentido común.

 

 

Todo esto está también relacionado con el fenómeno de la incertidumbre cuántica; la cual significa que una entidad cuántica por ejemplo un electrón en movimiento no tiene un conjunto de propiedades bien determinadas o definidas tales como las que podríamos encontrar que tiene una bola de billar al rodar por la felpa de una mesa donde la misma claramente tiene una velocidad y una posición determinada en cada instante. La entidad cuántica, en nuestro caso el electrón en movimiento u órbita alrededor de un núcleo, o moviéndose a través de un hilo conductor de corriente eléctrica, no puede saber en forma precisa a donde está ni a donde se dirige. Esto que aquí se menciona, puede parecer un fenómeno totalmente irrelevante, algo sin importancia para nuestra vida de todos los días (a quien le puede importar, lo que hace un electrón!!). Pero en realidad es esta incertidumbre cuántica, la que permite que un núcleo de una molécula de hidrógeno se una a otro en un proceso denominado fusión nuclear, que es la fuente básica de la energía solar. Esto significa ni más ni menos que si este concepto de incertidumbre cuántica no existiera, el sol no sería lo que es, y por lo tanto nunca nos preguntaríamos acerca de estas cosas “triviales” y “sin sentido” porque sencillamente no existiríamos.

La física cuántica no es un ejercicio académico e intelectual sin sentido para la vida. Es necesario saber esta rama de la física para construir una planta nuclear como también una bomba nuclear, para diseñar mecanismos láser, los cuales  permiten desde escuchar música en un CD hasta leer información almacenada en el disco rígido de una PC o mecanismos similares al láser utilizados para amplificar señales satelitales que alimentan lo que vemos en TV.

La física cuántica es importante en el diseño y la operación de todo aquello que contiene semiconductores – chips para PC, TV, equipos de audio, máquinas de lavar, autos, TE celulares -. Los semiconductores son materiales que tienen propiedades intermedias entre los aislantes (aquellos en que los electrones de los átomos del elemento que compone el material aislante, están firmemente ligados al núcleo de dichos átomos) y los materiales conductores (en los cuales los electrones están libres de ataduras y se mueven libremente a través del material conductor). En un semiconductor, algunos electrones están apenas ligados a sus núcleos y pueden saltar hacia otros núcleos y así moverse de una manera específica siguiendo ciertas reglas cuánticas conocidas como estadística de Fermi-Dirac.

Los electrones que se encuentran en la parte más externa de los átomos de los elementos, son los que forman las interfaces entre los diferentes átomos y moléculas que así forman todos los compuestos químicos conocidos. La conducta de los electrones en los átomos y moléculas, solo puede ser explicada a través de la física cuántica, es decir toda la química es explicada a través de la física cuántica.  La vida misma está basada en interacciones químicas complejas, siendo la más notable de todas el arquetipo de la molécula de la vida, el ADN. Esta molécula tiene la habilidad de desdoblarse y producir una copia similar de sí misma. Ciertas ligaduras que mantienen unidas a estas moléculas de ADN  y que permiten este proceso de desdoblamiento, son una clase de ligadura o unión química denominada unión hidrógeno, en la cual el núcleo de un átomo de hidrógeno es compartido entre dos átomos o entre dos moléculas formando la ligazón entre ellas. La manera fundamental en que los procesos de la vida operan solo se puede explicar a través de procesos cuánticos que operan en estos sistemas de unión hidrógeno. En genética, para poder separar genes, a los efectos de agregarles nueva información genética e integrarlos a su estado original, es necesario entender cómo y porqué los átomos se unen entre ellos y en una cierta secuencia pero no en otras posibles, porqué ciertas uniones son mas poderosas que otras, y porqué ciertas uniones mantienen a los átomos y a las moléculas separados a ciertas distancias fijas. Se puede conocer todo esto por prueba y error, sin entender las leyes de la física cuántica que gobiernan estos procesos, pero llevaría un tiempo cuasi- infinito antes de arribar a conclusiones válidas (en efecto la evolución opera dentro de esta forma de prueba y error).

Cuando hablamos aquí en estos ejemplos de entender o describir los fenómenos, no nos referimos a una descripción en términos generales en una forma cualitativa. Por el contrario, la física cuántica permite realizar cálculos con una precisión asombrosa. El triunfo más grande de la física cuántica teórica, es la teoría que describe la interacción entre la luz (cualquier radiación electromagnética) y la materia (materia representada por los electrones, que son uno de los componentes básicos de la misma). Esta teoría se llama Electrodinámica Cuántica (QED) y fue desarrollada por el físico Richard Feynman. La misma explica cualquier tipo de interacción que pueda ocurrir entre ondas electromagnéticas y electrones de la materia con una precisión de cuatro partes en 100.000 millones. Es la teoría científica más precisa jamás desarrollada, juzgando la misma por un criterio acerca de cuan certeramente la teoría permite predecir los resultados experimentales. Para darnos una idea de qué estamos hablando, es tan precisa como  si calculáramos la distancia entre Nueva York y Los Ángeles con un error máximo igual al diámetro de un pelo.

Utilizando el mismo esquema de razonamiento de esta teoría tan exitosa, se construyó otra similar, intentando explicar lo que ocurre dentro de los protones y neutrones- partículas que son los componentes fundamentales en el núcleo de cualquier átomo-  esta nueva teoría fue denominada Cromodinámica Cuántica (QCD). Actualmente ambas teorías son las componentes de un modelo estándar que permite explicar la composición básica de la materia, es decir de todo lo que existe.

J.J.Thompson nunca hubiera imaginado el camino que seguiría la ciencia luego de su descubrimiento del electrón, aunque en realidad los primeros pasos hacia el desarrollo de la física cuántica no se dieron a partir de las investigaciones sobre el electrón, sino sobre el otro componente de la interacción fundamental desarrollada en la QED: la luz en su acepción corpuscular: los fotones.

 

 

Al final del siglo XIX, nadie pensaba que la luz podía comportarse como partículas denominadas fotones, las observaciones de muchos fenómenos mostraban que la luz se comportaba como una onda, las ecuaciones del electromagnetismo descubiertas por James Clerk Maxwell describían a la luz como una onda. Pero fue Max Planck quien descubrió que ciertas características de la forma en que la luz es emitida y absorbida por un cuerpo, solo se podrían explicar si la radiación producida por el cuerpo emisor ocurriera en paquetes de cierto tamaño fijo, a los que el denominó cuantos de luz.

Su teoría en un primer momento fue considerada como un artificio matemático, pero que en realidad la luz era una onda, ni siquiera Planck consideraba que la misma tuviera algún significado real, era algo así como cerrar los números. El primero en tener en cuenta esta idea de la luz como partícula fue Einstein aunque aún era muy joven y no tenido en cuenta por la comunidad científica. El utilizó este concepto para explicar un fenómeno conocido como Efecto Fotoeléctrico, en un paper escrito en 1905. Pasaron muchos años, incluso con científicos intentando demostrar que este concepto era erróneo (Robert Millikan), para que finalmente fuera aceptado como válido y así Einstein recibió por su trabajo el premio Nobel en 1921.

Durante la misma época otros científicos liderados por Niels Bohr, aplicaban los conceptos de la física cuántica para entender y desarrollar nuevos modelos de la estructura de los átomos. El modelo así desarrollado permitió explicar ciertos fenómenos que hasta ese momento parecían mágicos, tales como la forma en que los átomos de diferentes elementos producían líneas claras y oscuras en longitudes de onda precisamente definidas según fuera cada elemento utilizado, en los experimentos de espectros de refracción de la luz emitida por estos elementos. Tal vez aquí valga alguna aclaración acerca de este concepto de espectros. Cada elemento químico, por ejemplo el hidrógeno, o el níquel, o la plata, o el carbono, o el cloro, para mencionar algunos y saber que queremos decir al pronunciar la palabra elemento químico; está asociado a un único espectro óptico, el cual se obtiene de la luz emitida cuando dicho elemento es calentado hasta su incandescencia. No solamente los átomos poseen espectros característicos, sino que las moléculas formadas por diferentes átomos también lo tienen, y también lo tienen los núcleos de los átomos. Este espectro significa que estos objetos (núcleos, átomos, moléculas) cuando reciben energía de alguna forma (calentamiento) emiten (también absorben) radiación electromagnética a ciertas frecuencias definidas que van desde la región de las frecuencias de radio para las moléculas, hasta la región de los rayos X de longitud de onda muy corta o los rayos g para los núcleos. Con estas radiaciones se pueden hacer experimentos de refracción cuyo resultado es lo que se denomina un espectro electromagnético, aquellas bandas o líneas de claridad y oscuridad que mencionábamos. Los espectros ópticos, es decir los que están dentro del rango correspondiente a la radiación visible (la luz) fueron descubiertos en el siglo XIX aunque no tenían una explicación científica, al menos dentro de lo que la física clásica permitía. 
 Para clarificar aun mas este fenómeno, se debe tener en cuenta que en el estudio denominado espectroscopia, existen tres experimentos diferentes:

Sólido incandescente; que consiste en calentar un sólido hasta que produce una luz blanca (la bombita de luz), esta luz contiene todas las frecuencias del espectro visible. Cuando a dicho haz de luz se lo hace pasar por una ranura y luego incidir sobre la parte angosta de un prisma, pueden observarse en una pantalla, al otro lado del prisma, el llamado espectro continuo de colores (el arco iris).

Gas monoatómico (un elemento) caliente; si utilizamos el mismo dispositivo de la ranura y el prisma, pero el haz de luz proviene ahora desde una cámara con un gas a una temperatura tal que emite luz, el espectro que veremos en la pantalla deja de ser continuo. Ahora se verán líneas brillantes con la forma de la ranura sobre la pantalla y cada línea con el color correspondiente al espectro continuo que mencionamos en el caso anterior. Diferentes tipos de gases producen diferentes espectros de líneas. Las propiedades integradoras del ojo humano impiden que veamos las líneas, es así que se percibe los colores fundidos como una sola cosa, por ejemplo vemos rojiza la luz del gas peón incandescente, amarilla la luz del sodio gasificado. A estos espectros de líneas producidos por el calentamiento de gases, de los denomina espectros de emisión.

Gas monoatómico frío ( a temperatura ambiente): combinamos los dos experimentos anteriores. Calentamos el sólido hasta su incandescencia, se hace pasar la luz que este emite por una cámara donde se encuentra alojado un gas frío, el haz de luz que sigue su camino luego de pasar por el gas frío, se  hace pasar por la ranura y el prisma ¿Qué resulta? En la pantalla ahora veremos un espectro de líneas oscuras, ubicadas en las mismas posiciones que estaban las líneas brillantes en el caso anterior. Esto indica que el gas frío esta absorbiendo energía en la misma frecuencia que emite cuando esta caliente. A este espectro se lo denomina de absorción

Actualmente la explicación a estos fenómenos, está dada por la física cuántica estableciendo que los espectros se interpretan en términos  de niveles de energía de los átomos, moléculas y núcleos. El estudio de los espectros nos lleva a conocer que, asociado con cada sistema compuesto (núcleos = protones + neutrones; átomos = núcleos + electrones; moléculas = átomo + átomo), existe un conjunto de niveles energéticos o estados estacionarios que son una característica del sistema al que nos referimos. Estos niveles se manifiestan de manera muy directa e invariable en los espectros que observamos ¿Qué quiere decir esto? : hasta tanto no se conocía la existencia del electrón, esto era un total misterio. Con la llegada del electrón y el ingenio de Bohr se comenzó a tejer una teoría acerca del modelo atómico que tenia cierta congruencia con los fenómenos observados a partir de la espectroscopia. así se plantearon algunos principios:

a) Los electrones que forman parte de un átomo pueden existir solamente en ciertos estados estacionarios de movimiento interno, estos estados forman un conjunto discreto (no continuo), y cada estado viene caracterizado por un determinado valor de la energía total. Son como los peldaños en una escalera.

b) Cuando un átomo emite o absorbe energía, este fenómeno se manifiesta por la radiación o absorción de  lo que llamamos un fotón u onda electromagnética. Lo que está ocurriendo es que los electrones del átomo saltan de un estado estacionario a otro, pasan de un escalón a otro. Si este salto es desde un nivel superior de energía a un nivel inferior, la diferencia de energía, es decir lo que sobra se debe emitir. Esto es lo que ocurre, se emite una partícula de energía llamada fotón que es igual a la diferencia de energía entre los dos niveles. Este fotón, estará dentro del espectro de radiación electromagnética según sea su frecuencia. La relación entre energía y frecuencia está dada por la ecuación de Planck E = h.n, donde h es una constante universal (la constante de Planck que ya mencionamos) y n es la frecuencia del fotón. Según es el valor de n, la radiación será visible o no.

La realidad es que los estados de energía superiores no son totalmente estacionarios ya que de estos los electrones caerían espontáneamente hacia los de menor energía permitida, emitiendo así fotones. Para llegar a estos estados superiores  se debe entregar energía al sistema (átomo, núcleo o molécula) mediante algún mecanismo por ejemplo el calentamiento, descarga eléctrica, que luego perderá en la emisión tal como se describió antes.

Cada raya espectral que vemos corresponderá entonces a una frecuencia determinada que estará relacionada con los estados de energía permitidos según la ecuación de Planck:
E(1)- E(0) = h.n, donde E(1) y E(0) son estados de energía, y h = 6,63×10-34joules.seg. La idea extraña detrás de esta explicación desarrollada por Bohr, es que al producirse el salto entre un nivel de energía y otro – entre los escalones de la escalera – los electrones no ocupan ningún nivel intermedio, esto es lo que se denominó un salto cuántico, es decir un electrón primero está en un cierto lugar y luego desaparece y aparece en forma instantánea en otro.
Si bien Bohr consideraba en su desarrollo a los electrones como partículas y a la luz como onda, ya se había aceptado el concepto de Einstein acerca de la existencia de dos teorías de la luz (ondas y partículas) las cuales no estaban conectadas en una forma lógica. Aparece entonces otro científico de renombre: Louis de Broglie, quien sugirió para los electrones un tratamiento similar, es decir estos no son solo partículas sino también ondas y que en realidad lo que viaja está en órbita alrededor del núcleo de un átomo no es una partícula sino una onda estacionaria, como la de la cuerda de un violín que está fija en sus dos extremos. Esta idea si bien rara, permitía explicar mejor el denominado salto cuántico de los electrones cuando transitaban desde un nivel de energía a otro. Ahora el mismo se podía explicar en términos de vibración de la onda, al cambiar de una armónica a otra. Posteriormente otro científico de renombre Erwin Schrödinger, desarrolló una descripción matemática completa de la conducta de los electrones en los átomos, basado en la idea de onda. Otras descripciones matemáticas explicando las conductas de los electrones fueron apareciendo de la mano de Heisenberg, Paul Dirac todas ellas equivalentes pero con visiones diferentes acerca del significado de un mismo mundo cuántico, así fueron emergiendo las diferentes realidades cuánticas. No importaba que ecuaciones se utilizaran, todas describían los mismos fenómenos dando los mismos resultados. De todas maneras, dado que los científicos estaban mas familiarizados en el trabajo con ecuaciones de ondas (mecánica ondulatoria), fueron las desarrolladas por Schrödinger basadas en la función de onda del electrón, las que se transformaron en convencionales para desarrollar cálculos en lo que se denominó la mecánica cuántica. Ya a fines de 1920 los físicos contaban con diferentes menús matemáticos para describir el micromundo, todos estos funcionando perfectamente bien con un alto grado de precisión en todas las predicciones acerca de experimentos reales que se realizaban; lo malo era que todos incluían algunos de los conceptos que resultaban extraños para el sentido común, tales como el salto cuántico, la dualidad onda-partícula, o el principio de incertidumbre.

Bohr fue el primero que desarrolló una idea acerca de la realidad del mundo cuántico, denominada la interpretación de Copenhague. Esta dice que los electrones o cualquier entidad cuántica no existen en tanto y en cuanto no sean observados, sino que lo que existe es una nube de probabilidades que mide cual es la probabilidad de que la entidad se encuentre en un determinado lugar en un determinado momento. Cuando nos decidimos a observar a dicha entidad cuántica (el electrón por ejemplo), se produce lo que se denomina un “colapso” de la función de onda, en el cual la entidad elige al azar una posición donde ubicarse, esa es la posición que el observador detectará. Una vez que cesa la observación, de nuevo la entidad se disuelve en una nube probabilidades descripta por la función de onda que se esparce desde el último sitio en donde se realizó la observación.

Aquí es necesario volver sobre el capítulo de las ondas. Max Born otro de los físicos de la época conecto las ondas cuánticas con los hechos reales en una forma innovadora. Las ondas cuánticas, es decir aquellas que describen a las entidades cuánticas como los electrones, siguen las mismas reglas que cualquiera de las ondas físicas mencionadas, el agua en la pileta, el sonido, las ondas electromagnéticas. Es decir se pueden sumar, superponer, interferir. Habíamos dicho que Las ondas se caracterizan por el medio que vibra para producir las ondas que transmiten la energía; así el agua en el caso de las ondas acuáticas, el aire para las ondas sonoras, los campos eléctricos y magnéticos para el caso de las ondas electromagnéticas. En el caso de las ondas cuánticas que son un tipo de onda especial, las mismas son oscilaciones de probabilidades. Las ondas cuánticas, a diferencia de las ondas comunes, no trasladan energía, por eso se las denomina ondas vacías. La amplitud de la onda cuántica elevada al cuadrado, lo que se conoce como la intensidad en el movimiento ondulatorio, es una medida de probabilidad. ¿Probabilidad de qué? De que una entidad cuántica, el electrón por ejemplo, se encuentre en una posición determinada. Recordemos que para las ondas comunes la amplitud al cuadrado daba una medida de la energía que transportaba la onda en cuestión.

Llegando ya al final de esta historia, es importante mencionar que dos monstruos de la ciencia, Einstein y Bohr mantenían posiciones opuestas; Bohr defendiendo los fundamentos de la cuántica por medio de explicaciones que no encajaban con el sentido común, Einstein todo lo contrario diciendo que no podía aceptar la ruptura implícita en todas las explicaciones de la física cuántica. Para el todos los fenómenos de la naturaleza, debían estar basados en lo que se denominaba “realidad local”. ¿cuál es el significado de esta expresión?

Realidad significa que todas las entidades cuánticas son reales incluso cuando no se las observa, y no como se argumentaba que estas entidades cuánticas (el electrón) solo existían como nubes de probabilidades mientras no son observadas, para concretarse en una partícula concreta al observarlas.

Local significa que nada puede transmitirse a una velocidad superior a la de la luz, ni siquiera la información dado que esta viajará en ondas electromagnéticas a dicha velocidad.

Estos conceptos que contaban con la aprobación de los científicos defensores del sentido común, no eran aceptados por los cuánticos (Bohr), quienes mantenían que en el mundo cuántico no pueden darse ambos, o bien las entidades son reales y entonces existe transmisión de información a una velocidad superior a la de la luz, o bien si esto no es posible, entonces las entidades cuánticas no son reales y solo existen en el momento en que son observadas.

A pesar de lo extraño de estas ideas, en un experimento llevado a cabo en París en 1982 por el científico Alain Aspect, utilizando como entidades cuánticas fotones, se demostró que las predicciones de la física cuántica eran correctas: el mundo cuántico no puede estar compuesto a la vez de entidades reales y ser local (la luz como velocidad máxima de transmisión). Esto significa que el micromundo no funciona conforme a las reglas del sentido común determinadas por nuestras experiencias cotidianas. Pero como dijo Feynman hace ya mas de treinta años: “nadie entiende los fenómenos cuánticos; pero no nos preocupemos por preguntarnos por qué la naturaleza se comporta así, sino maravillémonos admirando al conocer cómo la naturaleza se comporta”.

Einstein, Bohr, Planck, Schrödinger, de Broglie, Heisenberg, Born, Dirac, Pauli, Feynman, Gell-Mann

El desarrollo de la física cuántica fue el esfuerzo de muchos hombres de ciencia que en el transcurso de 25 años revolucionaron un campo que se creía acabado para nuevos avances, y que continua hasta nuestros días. La idea aquí es simplemente recordar a esos monstruos de la ciencia, con algunos datos personales y menciones acerca de cuales fueron sus logros, algunos de los cuales se han desarrollado a lo largo de este trabajo.

Albert Einstein (1879-1955): Lo mas notable de este hombre fue que con sus trabajos acerca del efecto fotoeléctrico, confirmo de alguna manera los avances de Planck acerca de la existencia d e los cuantos de energía. No obstante lucho hasta el fin de su vida contra la interpretación que se le daba a esta física que el ayudo a nacer. Sin duda el mundo lo conoce a Einstein por su Teoría de la relatividad, en sus versiones especial y general. Esta teoría junto con la cuántica fueron las que le quitaron el sueño a los clásicos. Einstein nació en la ciudad de Ulm, gano el premio Nobel no por sus dos teorías de la relatividad sino por el mencionado efecto fotoeléctrico. Cuando quiso entrar en la escuela técnica de Zurich, fracaso en el ingreso por lo que tuvo que pasar un año reforzando sus conocimientos de matemáticas antes de poder ingresar. No fue un alumno brillante, no consiguió un trabajo fácilmente al graduarse y tuvo que contentarse con un empleo menor en una oficina de patentes en Berna. Allí en sus ratos libres fue desarrollando trabajos científicos que finalmente le permitieron alcanzar su doctorado. Fue a partir de 1909, que logro ingresar como profesor en la Universidad de Zurich. Con la llegada de Hitler a Alemania, Einstein se mudo a Princeton USA donde permaneció desde 1933 hasta su muerte. Nunca como dijimos acepto la interpretación de Copenhague de Niels Bohr, con su famosos dicho que “Dios no juega a los dados”, por lo que, a su criterio, debería existir algún mecanismo o variables ocultas que hicieran que el Universo fuera explicable dentro de la lógica humana, y con un carácter mas determinístico y no tan probabilístico en sus comportamientos, como surgía en todos los sistemas cuánticos estudiados.

Niels Bohr (1885-1962) : Físico danés quien obtuvo el premio Nobel por sus trabajos acerca d la estructura del átomo basada en la espectroscopia y la física cuántica. Inicio sus trabajos con J.J.Thomson pero no tuvo éxito en sus relación personal con este físico. Se traslado entonces a Manchester para trabajar con Ernest Rutherford quien recientemente  había descubierto la estructura atómica constituida por un núcleo en el centro y partículas cargadas (los electrones) como en orbitas alrededor del núcleo. En 1916, las autoridades de Dinamarca, le ofrecieron una cátedra y la promesa de armar su propio Instituto. Así en 1918, el Instituto de Física Teórica se estableció con donaciones , principalmente de la cervecería Carlsberg, siendo Bohr nombrado Director,cargo que retuvo hasta su muerte. Dentro de ese Instituto, Bohr atrajo para trabajar durante periodos mas cortos o largos a los mejores físicos teóricos del momento, brindándoles estímulos para el desarrollo de ideas acerca de la teoría cuántica. La interpretación que surgió de este Instituto, se transformo en una de las clásicas para la física cuántica, se la conoce como la interpretación de Copenhague. Si bien muchos fueron los que aportaron para fortalecer esta interpretación de la física quántica, la fuerte personalidad de Bohr y su prestigio personal fueron factores decisivos para que la interpretación de Copenhague  fuera “la interpretación aceptada de la mecánica cuántica”, a pesar de sus falencias, hasta las décadas del 80 y 90. Bohr siempre tuvo una preocupación relacionada con la posibilidad de construir armamento nuclear a partir del desarrollo de sus teorías. Después de la guerra, trabajo activamente para el control de las armas nucleares y organizo la primera conferencia denominada Átomos para la Paz, en Ginebra en 1955.

El principal aporte de Bohr como dijimos fue su desarrollo del modelos atómico. En este , Bohr decía que los electrones que están en orbita alrededor del  núcleo, no caen en espiral como predecía la teoría electromagnética, sino que los mismos se encuentran en orbitas estables, correspondientes a ciertos niveles fijos de energía, en donde pueden mantenerse sin perder energía. Estos niveles fijos no adoptan cualquier valor, sino que son múltiplos enteros de una cantidad mínima: el cuanto de energía. De esta forma solo existen estas orbitas permitidas y entre ellas nada, es decir no hay orbitas intermedias. Este cuanto de energía es medido en términos de la constante de Planck h. Un electrón según explicaba Bohr, puede saltar de una orbita permitida a otra, ya sea emitiendo la energía sobrante, si es que pasa de una orbita de mayor energía a una de menor (proceso de acercamiento al núcleo), o absorbiendo energía en el caso contrario. Este cuanto de energía que emite o absorbe, lo hace en la forma de un fotón cuya energía es la que resulta de la formula de Planck DE = h.n, donde n es la frecuencia del fotón sea emitido o absorbido. Además Bohr agrego el concepto de que las orbitas permitidas no pueden albergar a un numero ilimitado de electrones sino que pueden completarse. La representación grafica o visual de este modelo es la de los electrones que como bolitas están ubicados en los escalones de una escalera cuya capacidad es limitada. Cuando un escalón tiene lugar libre, otro electrón situado en un peldaño superior puede caer hacia ese lugar libre, perdiendo la energía correspondiente al salto o diferencia de altura entre ambos escalones. Estas caídas y subidas explicaban las líneas de emisión y absorción en los espectros de la luz emitida por los átomos de gases monoatómicos. El genio de Bohr consistió en que no pretendió ni se preocupo por armar una teoría completa y consistente del mundo atómico, sino que tomo parte de la teoría cuántica (el cuanto de energía), parte de la clásica ( las orbitas) y las combino para intentar explicar fenómenos hasta ese momento inexplicables. Bohr explico este modelo en Inglaterra durante 1913 con diferente suerte, algunos lo aceptaron y continuaron avanzando sobre el mismo, otros lo desecharon. Finalmente en 1922 Bohr recibe el premio Nobel debido a este trabajo. Los avances fueron lentos, el modelo de Bohr permitía muchas mas líneas en los espectros de las que en realidad se veían. La limitación de la cantidad de electrones en cada orbita permitida, también era una idea arbitraria y sin comprobación aparente. Estas propiedades, se organizaron mediante la asignación de números, llamados números cuánticos, que servían para describir el estado del átomo y hacer que su comportamiento fuera convalidado por las observaciones. Bohr no dio en ese momento, ninguna explicación teórica de donde provenían estos números cuánticos o porque algunas transiciones no eran permitidas. A pesar de todas estos puntos débiles,  el modelo funciono. Predijo la existencia de líneas en el espectro que hasta el momento no  habían sido detectadas pero que fueron luego detectadas experimentalmente en los lugares exactos donde el modelo las pronosticaba.

Max Planck (1858-1947) : Físico alemán quien fue el primero en darse cuenta a fines del siglo XIX que la radiación de un cuerpo negro (un radiador perfecto) podría explicarse si se consideraba que la energía electromagnética absorbida o irradiada, solo lo hacia en forma discreta y no continua, en cuantos o paquetes de energía. Planck no pensaba en la existencia de los después llamados fotones, sino que simplemente era su forma para explicar la interacción entre los átomos que oscilaban al ser calentados y las radiaciones que se generaban en el interior de este cuerpo radiante, interacción esta que debía mantenerse en equilibrio. Planck era un eximio pianista, tocando a veces junto con Einstein quien lo acompañaba con el violín. Fue profesor de física en la Universidad de Berlín desde 1892 hasta su retiro en 1926 cuando fue sucedido por Erwin Schrodinger, otro de los hacedores de la cuántica. Planck fue un físico de la vieja escuela que trabajaba muy duro y era sumamente conservador en sus ideas, su gran interés era la termodinámica, de allí su interés en intentar resolver lo que se conocía como la catástrofe ultravioleta mediante la aplicación de conceptos de termodinámica. Si bien se sintió frustrado por no lograr una solución aceptable y una correcta explicación de los espectros de radiación; publico varios trabajos que establecieron una conexión entre la termodinámica y la electrodinámica. Su logro al inventar su famosa constante h, no fue algo frío y meditado sino que resulto de un estado prácticamente desesperado en el que se encontraba para poder hallar una solución satisfactoria al dilema que surgía entre dos propuestas incompletas y aparentemente contradictorias acerca de la radiación electromagnética (las leyes de Rayleigh-Jeans y la de Wien). En este proceso ideo algún artificio matemático para que ambas pudieran compatibilizarse. Planck saco la curva correcta de la galera con una afortunada intuición, sin entender a fondo el fenómeno que estaba explicando. En el orden familiar vale recordar que el hijo menor de Planck, fue brutalmente asesinado por la Gestapo por haber tomado parte en un complot para asesinar a Hitler durante 1944.

Erwin Schrodinger (1887-1961): Físico austriaco que desarrollo la formulación de la física cuántica conocida como la mecánica ondulatoria, recibiendo como resultado de estos trabajos, el premio Nobel en 1933. Es reconocido como un científico de la vieja escuela, cuyos trabajos acerca de la mecánica ondulatoria, apuntaban a rescatar el sentido común según las ideas clásicas, para la física cuántica. La idea detrás de la mecánica ondulatoria surge del trabajo realizado por Louis de Broglie que consideraba a los electrones en su comportamiento ondulatorio. Respecto a los conceptos extraños que suponía la cuántica tales como el salto quántico o el papel del observador en la determinación de la realidad, Schrodinger decía: “esto me disgusta y hubiera querido no tener nada que ver con el desarrollo de esta disciplina”. Con la llegada de los nazis al poder, Schrodinger se traslado a Oxford donde no permaneció mucho tiempo. Regreso a Austria, posteriormente paso a Italia, USA y finalmente a Irlanda. Durante sus estadía en este país, escribió un libro denominado “¿Qué es la vida?” que alentó a un gran numero de físicos a orientarse al estudio de la biología molecular después de finalizada la guerra. Su desarrollo fundamental fue la llamada ecuación de onda, que se utilizo en una de las versiones de la física cuántica para describir el comportamiento de una entidad cuántica tal como un electrón o un fotón. Este fue el inicio de lo que se conoce como mecánica ondulatoria que fue el marco preferido por los científicos para resolver los problemas implícitos en las interacciones cuánticas. Esta preferencia se debió a que los físicos estaban familiarizados con el lenguaje de las ecuaciones de ondas. Esta también es la razón por la que todavía hoy se utiliza esta aproximación al tema , cuando se ha demostrado que otras son mas potentes para proveer un mejor discernimiento acerca de este submundo atómico y posibilita realizar trabajos mas avanzados en el tema.

Louis de Broglie (1892-1987): Era un príncipe de la nobleza francesa, que inicialmente estudio Historia en La Sorbona, y se inicio en las ciencias por la influencia de su hermano mayor. La genialidad de de Broglie esta en que extrapolo lo que surgía del trabajo de Einstein acerca del efecto fotoeléctrico, donde algo como la luz que era considerada una onda, tenia también comportamientos de partícula, al mundo de lo material. Fue así que se pregunto si esto pasa con lo que considerábamos ondas, podría  ser lo mismo con lo que consideramos partículas. Su inquietud resulto cierta, y solo pudo llegar a tesis de doctorado, gracias al apoyo intelectual brindado por Einstein quien fuera consultado acerca de si esto que este alumno intentaba discutir, no era una burrada. Einstein fue conciso pero contundente, y dijo a Paul Langevin, tutor de de Broglie, “creo que esto es mas que una mera analogía”, y así de Broglie recibió su doctorado en física. Tanto Louis como su hermano se involucraron en el desarrollo pacifico de la energía atómica.

Werner Heisenberg (1901-1976): Nació en Alemania y es uno de los padres fundadores de la física cuántica. Su mayor descubrimiento es el denominado Principio de Incertidumbre. La expresión formal de este principio dice que la cantidad de incertidumbre cuántica en la determinación simultanea de ambos miembros de un par de variables conjugadas, nunca es cero. En física cuántica, el concepto incertidumbre es algo preciso y definido. Existen pares de parámetros denominadas variables conjugadas, para las que es imposible conocer el valor que adquieren en el mismo momento. Las mas conocidas de estas variables conjugadas son la posición y el momento ( velocidad, cantidad de movimiento), como también la energía y el tiempo. La incertidumbre posición/momento es la típica que explico Heisenberg en 1927, diciendo que ninguna entidad cuántica puede tener una velocidad precisa y determinada, y una posición también precisa y determinada al mismo tiempo, es decir simultáneamente. Esto no era el resultado de deficiencias en los sistemas o aparatos, o dificultades en el proceso de medición; es decir que no pudiéramos físicamente realizar esta medición. La realidad es que las entidades cuánticas- el electrón por ejemplo- no tienen una posición y una velocidad precisa al mismo tiempo. Esta incertidumbre, como ya se había mencionado es la que explica el fenómeno denominado efecto túnel. La incertidumbre de las variables conjugadas energía /tiempo, es la que nos permite identificar la existencia de las llamadas partículas virtuales. La incertidumbre cuántica, no obstante, no se manifiesta sensiblemente en los grandes objetos, es decir objetos mas grandes que una molécula, esto se debe a la dimensión de la constante de Planck “h” del orden de 10-34. Heisenberg trabajó con Born y con Bohr antes de convertirse en profesor en la Universidad de Leipzig. Dado que permaneció en Alemania durante la segunda guerra mundial, se sospechaba de el que tenia simpatía para con el régimen nazi. Los aliados temían que fuera unos de los científicos que pudiera facilitar el desarrollo de la bomba atómica para los alemanes. En realidad dada la limitada investigación en esta materia, llevada a cabo en Alemania durante la época, solo le permitió concentrarse en el desarrollo de medios para la obtención de energía y no en armamentos. Heisenberg siempre dijo que esto fue gracias a que el mantuvo el interés enfocado hacia este tema. Aunque algunos dudan de esta afirmación. Durante un periodo de recuperación de una enfermedad en las montañas de Heligoland, fue cuando Heisenberg formulo lo que luego se reconoció como mecánica matricial, la primera teoría cuántica completa y consistente con los resultados experimentales. Posteriormente Born y Jordan ayudaron a completar la misma dándole una significación física mas perceptible. Una copia del trabajo de estos tres científicos antes de que fuera publicado, fue la inspiración para que Paul Dirac elaborara su propia versión de la teoría cuántica. Todo esto ocurría un año antes que Schrodinger publicara su versión de la mecánica ondulatoria como otro enfoque de la misma teoría cuántica. En tan solo un par de años, se revolucionaron trescientos años de la física clásica. Mas adelante Heisenberg desarrollo el concepto de incertidumbre. Luego de la guerra, Heisenberg tuvo un papel importante en el establecimiento dl Instituto Max Planck para la física. Sus últimos trabajos científicos intentaron en vano desarrollar una teoría unificada de los campos. El fue un proponente de la idea de “todo indivisible” en la que todo en el mundo y especialmente en el mundo cuántico, es parte de un sistema único, que por ejemplo permitiera explicar en el experimento de la doble ranura, porque los electrones tiene comportamientos diferentes según se este observando o no por que ranura están pasando. Estas ideas aunque no tenidas muy en cuenta, fueron posteriormente desarrolladas por David Bohm.

Max Born (1882-1970): Físico alemán que introdujo la idea de que los resultados de los experimentos o interacciones en las cuales participan entidades cuánticas, no son directamente deterministicos, sino que son intrínsecamente probabilísticos. Después de la guerra en 1920 se estableció Gottingen donde desde la cátedra de física teórica desarrollo un centro de excelencia en dicha disciplina, algo menos reconocido que el Instituto Niels Bohr de Copenhague. Durante los años 20 Born contaba en dicho centro con la participación de físicos de renombre tales como Heisenberg, Jordan y Pauli. Cuando Heisenberg desarrollo su descripción matemática de la física cuántica, fue Born quien reconoció su intima conexión con la teoría matricial. Trabajando en conjunto con Heisenberg y Jordan, concluyeron en la primera versión consistente y completa de la mecánica cuántica. Algo mas tarde Schrodinger concluyo la versión ondulatoria de la mecánica cuántica, basada en tratar a las entidades cuánticas (electrones, fotones, partículas subatómicas), como si fueran ondas. Born fue el que mostró que las ondas en la mecánica cuántica de Schrodinger, podrían ser consideradas no como una realidad física, sino como representaciones de probabilidades. Así llego a ser el mas firme proponente de la idea que el resultado de cualquier interacción dentro del mundo cuántico, estará determinado, en un sentido estrictamente matemático, por la probabilidad de ocurrencia de dicho resultado entre muchos de los posibles permitidos por las leyes físicas. Era de familia judía por lo que fue obligado a dejar Alemania durante el régimen nazi, emigrando hacia Inglaterra primero y finalmente Escocia, regresando a Alemania con nacionalidad británica luego de finalizada la guerra. Fue un gran pacifista, formando parte de activos oponentes al desarrollo de las armas nucleares. Murió a los 87 años de edad.

Paul Dirac (1902-1984): Físico ingles nacido en Bristol. Luego de graduarse como ingeniero electricista y en matemáticas, ingreso en Cambridge bajo la supervisión de Ralph Fowler, recién aquí en Cambridge es cuando entra en contacto con la teoría cuántica. En 1925, Heisenberg dio una exposición en Cambridge, donde Dirac era parte de la audiencia. Si bien no discutió sus ideas en esa charla, si lo hizo en privado con Fowler y le envió una copia de su trabajo aun no publicado acerca del enfoque de la teoría cuántica a través es de los conceptos de la mecánica matricial. Fowler le mostró el trabajo a Dirac y le pidió una opinión según sus conocimientos matemáticos. Así Dirac utilizando lo que ya sabia hizo su propio desarrollo de esta teoría, conocido como Teoría del Operador o Álgebra Cuántica. Después de obtener su doctorado en 1926, Dirac visito el Instituto Niels Bohr en Copenhague, donde mostró que tanto la mecánica matricial de Heisenberg como la mecánica ondulatoria de Schrodinger, eran casos especiales de su propia teoría del operador o álgebra cuántica, y que a demás eran totalmente equivalentes. En 1927, Dirac introdujo la idea de segunda cuantizacion a la física cuántica, abriendo el camino hacia el desarrollo de la teoría del campo cuántico. Sin embargo su mayor contribución al campo de la ciencia , se debe a la ecuación que desarrollo incorporando los conceptos de la física cuántica y los requerimientos de la teoría especial de la relatividad, para así dar una explicación completa del electrón. Uno de los puntos sobresalientes de esta ecuación, fue que tenia dos soluciones, correspondiente a electrones con energías positivas y con energías negativas. Estos últimos son denominados positrones. Dirac así había pronosticado la existencia de la antimateria, hasta que Carl Anderson experimentalmente detecto la existencia de positrones en 1932. Dirac también desarrollo las reglas estadísticas que gobiernan el comportamiento de gran cantidad de partículas cuyo spin es la mitad de un numero entero, tales como los electrones. Las mismas reglas estadísticas fueron desarrolladas por Enrico Fermi, de allí que son conocidas como estadística de Fermi-Dirac; a las partículas que obedecen estas reglas cuando se hayan en grandes cantidades se las denomina fermiones. Después de su retiro en Cambridge, se instalo en Florida USA como profesor de la Florida State University hasta su muerte. 
v     Wolfgang Pauli (1900-1958): Físico austriaco cuyo principal aporte a la teoría cuántica, es el denominado principio de exclusión, por el cual recibió su Premio Nobel. Su talento fue demostrado cuando en un trabajo de 200 paginas presento una comprensiva revisión de las teorías de la relatividad de Einstein en sus versiones especial y general. Su famoso Principio de Exclusión se publico en 1925. Explicaba porque cada orbital en un átomo ( en ese tiempo aun se pensaba a los electrones en orbitas, aunque el principio vale también ahora) podía ser ocupado como máximo por dos electrones. El principio establece que dos fermiones no pueden ocupar el mismo estado cuántico, es decir no pueden tener los mismos números cuánticos. Este principio es el que requiere que los electrones en el átomo ocupen diferentes niveles de energía en lugar de agruparse todos en el nivel mas bajo de energía. Sin la existencia de esta exclusión cuántica no existiría la química. Los denominados niveles de energía son los permitidos para un sistema cuántico como un átomo, y corresponden a las diferentes cantidades de energía almacenadas. En el átomo, un  electrón tiene una bien definida cantidad de energía correspondiente a su lugar en la estructura atómica. Otros sistemas cuánticos como las moléculas o los núcleos atómicos también tienen niveles de energía bien definidos. En el mundo cuántico una característica fundamental es que los sistemas cuánticos pasan directamente desde un nivel de energía a otro sin estadios intermedios, este es el conocido salto cuántico. Se decía que Pauli era tan malo como físico experimental que con solo acercarse a un laboratorio de experimentación, los aparatos se descomponían.

David Bohm (1917-1992) : Físico y filosofo de la ciencia americano, que realizo contribuciones importantes a la interpretación de la mecánica cuántica. Se acerco a la ciencia a través de lecturas de ciencia ficción y posteriormente de astronomía. En tiempos de Mc Carthy fue echado de la Universidad de Princeton por haberse negado a implicar a ciertos compañeros de trabajo como miembros del partido comunista. Se traslado a Brasil donde trabajo en la Universidad de San Pablo, para luego ir a Israel y finalmente a Inglaterra. Su libro de Teoría Cuántica es considerado como uno de los mas accesibles para entender la interpretación de Copenhague. En el proceso de clarificar esta interpretación, Bohm se convenció de que la misma tenia errores, y así dedico el resto de su carrera a desarrollar y promover una versión alternativa de las interpretaciones de la teoría cuántica, conocida como la de las variables ocultas o la de la onda piloto o el todo indivisible. Bohm se refirió a esta, como la interpretación ontológica. Uno de los principales aspectos incorporados en la interpretación de Bohm, es el fenómeno denominado no-local o de la acción instantánea a distancia que tiene lugar entre dos entidades cuánticas; fenómeno este que fue comprobado con el experimento de Alain Aspect en los 80. Bohm también trabajo en varios problemas filosóficos ligados a las ideas modernas de la física y en la naturaleza de la conciencia humana.

Fue el físico mas grande de su generación, a la altura de Newton y Einstein. Feynman reformulo la mecánica cuántica poniéndola en una fundamentacion lógica incorporando los conceptos de la mecánica clásica. Desarrollo el enfoque de la integral de campo para la física cuántica desde donde surgió la mas clara y completa versión de la electrodinámica cuántica (QED), la cual junto con la teoría general de la relatividad es una de las mas exitosas y bien establecidas, en términos de dar explicación a todos los fenómenos experimentales donde se la ha aplicado. Fue un excelente maestro, que supo popularizar la ciencia. Feynman estudio en el MIT donde comenzó en Matemáticas para luego moverse a la Física. En Princeton bajo la supervisión de John Wheeler desarrollo su trabajo para el doctorado. Trabajo en Los Álamos en el proyecto para el desarrollo de la bomba atómica. Terminada la guerra fue contratado por la Universidad de Cornell para trabajar como profesor de física teórica. Es allí donde completo su trabajo en electrodinámica quántica por el cual recibió el premio Nobel de Física en 1965. En 1950 se traslado a Caltech permaneciendo en dicha Universidad hasta el fin de su carrera. En 1950 desarrollo la teoría de los superfluidos y descubrió una ley fundamental que describía el comportamiento de la fuerza débil. Al comienzo de 1960, Feynman dicto sus famosas clases que luego se editaron en tres tomos como “Las clases de Física de Feynman” que tuvieron impacto en la enseñanza de esta disciplina en todo el mundo. Desarrollo también la teoría de los partones para describir lo que pasa cuando electrones surgen de colisiones inelásticas entre protones. Esta fue un input importante para el desarrollo posterior de la teoría de los quarks, los gluones y la fuerza fuerte. Casi como un hobby, Feynman también investigo acerca de la teoría de la gravedad y sentó las bases para el desarrollo de una teoría quántica de la gravedad.

Murray Gell-Mann (1929- ) : Físico americano que obtuvo su premio Nobel en 1969 por sus trabajos sobre la clasificación de las partículas fundamentales. Fue quien introdujo el concepto de los quarks. Fue un niño prodigio recibiendo su PhD en física a los 22 años en el MIT. Trabajó desde 1956 hasta el fin de su carrera en Caltech junto con Richard Feynman, de quien siempre sintió su sombra intelectual.. En 1953, Gell-Mann y un físico japonés – Nishijima- trabajando independientemente, explicaron ciertas propiedades de las partículas fundamentales, asignando a las mismas una propiedad denominada extrañeza. Esta propiedad fue llamada así simplemente porque estas partículas eran extrañas debido a la duración de su vida excesivamente larga, en comparación con la de otras partículas similares. En 1962 Gell-Mann simultáneamente con otro físico llamado Zweig descubrió que muchas de las propiedades de las partículas fundamentales como los protones y los neutrones podrían explicarse si se asumía a los mismos compuestos por tres partículas mas pequeñas que posteriormente denomino Quarks.

La ciencia, tal como se la define actualmente, propone un conocimiento crítico e intenta describir la realidad y explicarla mediante leyes que son proposiciones universales que establecen bajo qué condiciones se producirán ciertos hechos, permitiendo así la predicción de los fenómenos, a condición de estar despojados de sentimientos, sensaciones y emociones. La física, por un lado, nos acerca al conocimiento de los elementos materiales que constituyen la Naturaleza próxima, y por otro, intenta investigar el origen del Universo y su evolución mediante modelos analíticos teóricos, y todo ello, recurriendo a la abstracta razón de la útil herramienta de las matemáticas. Los físicos se valen de la investigación en su vertiente fundamental o aplicada, dependiendo de si son teóricos o experimentadores. En cualquier caso, el objetivo último, tal vez utópico, es el de construir un modelo capaz de resolver todas y cada una de las cuestiones que se pueden plantear desde la relatividad general y la física cuántica, unificándolas en una sola teoría. En este momento, sin embargo, no parece posible un modelo físico-teórico que contenga a la vez, las fuerzas que interrelacionan la materia con la energía (electromagnetismo, gravedad, fuerza débil o de Fermi y fuerza nuclear) y las ondas y partículas elementales cuánticas.

La física cuántica establece que las partículas elementales, constituyentes del átomo, no son elementos esencialmente reales dada su imprecisión existencial. Se pueden comportar como partículas en un momento dado y como ondas en el siguiente o en el anterior. Existen en un espacio y un tiempo que no reconoce el presente, saltan del pasado al futuro, y a la inversa. El presente material sólo es reconocido como una necesidad y una arbitrariedad de la observación humana. No obstante, contradictoriamente, las partículas elementales y las ondas exigen su derecho de ser el fundamento de la materia. Paradigma complejo y de difícil solución. La curiosidad estriba en que tanto la física relativista como la cuántica resuelven problemas siempre que no sea simultáneamente. Esta disyuntiva generó el Principio de Incertidumbre propuesto por Heisenberg, que expresa el que no hay ningún elemento que exista en un lugar y en un tiempo determinados. Por tanto, la velocidad y situación de una partícula elemental solamente se puede fijar en un instante dado (por el diagrama de Friedmann), pero nunca se sabrá que sucederá en el instante siguiente, y tampoco si actuará como tal partícula o como función de onda.

La física clásica la erigió Newton como respuesta al sentido común. La materia se puede evaluar, se precisa su posición y su comportamiento, se prevén los movimientos y velocidades, sus energías y sus resultados. Las ondas eran elementos de segundo orden en comparación con las partículas que por sí solas eran suficientes para conformar la materia. La física clásica no intuyó con la perspicacia necesaria, las posibilidades de las ondas actuando como partículas, al no conocer estos elementos subatómicos, a la vez extremadamente cercanos y lejanos, pero vinculados estrechamente a la vida de los átomos. No fue más allá del horizonte molecular.

La física cuántica teoriza sobre la constitución íntima de la “materia real” fundamentándola en dos partículas elementales: fermiones y bosones.

Los fermiones son las partículas que construyen la estructura de la materia, y se encuentran representados por los electrones, protones y neutrones. Son partículas que actúan con cierta independencia y autonomía. Los bosones son los vectores que transportan la esencia y la fuerza de la Naturaleza, facilitando la conjunción del Universo. Son partículas independientes que siempre interactúan entre sí, a veces sincrónicamente, pero que en ciertas condiciones pierden su individualidad. Esta paradoja de la interdependencia e individualidad de estas partículas fue enunciada por Einstein, Podolski y Rosen. Los bosones están constituidos por los gluones, gravitones y fotones, siempre con tendencia unívoca a la reunión dispersa.

La interrelación dinámica entre fermiones y bosones, la fundamenta, especialmente, el fotón, que al no tener carga, es su propia antipartícula. Pares de electrones y positrones pueden ser creados espontáneamente por fotones, y este proceso se puede invertir como consecuencia de su propia aniquilación. La antipartícula del electrón es el positrón. La colisión de un fotón (?) con un electrón (e-) genera un brusco cambio en la dirección de este. El e- absorbe al ?. Luego, lo emite cambiando de nuevo su direcci?n.

Fermiones y bosones, son partículas elementales que sostienen y actúan en instantes indeterminados como funciones de onda.

Por causa de los bosones, los fermiones se mueven y se mantienen coherentes entre sí, aunque independientes, en el proceso de creación. Cuando los bosones se solapan por la afinidad generada por una información compartida resonante (concepto introducido por el autor) conllevan una determinada identidad, pero las probabilidades de existencia como tales partículas individuales, disminuyen, concretándose la materialización. A este proceso se le denomina caída de la función de onda. Esta primigenia afinidad puede hacer suponer la presencia de un inicial estado elemental de conciencia. La pérdida de la cualidad individual de los bosones, es la responsable directa de la aparición de un primer estadio de una estructura material consciente de su propia existencia.

 

La teoría cuántica sólo es posible expresarla en términos matemáticos y describe a la materia como una abstracción. En este sentido, la materia no ocupa ni un espacio puntual ni un tiempo determinado, se encuentra difundida y en un constante movimiento discontinuo, aleatorio e impredecible, en todo el Universo. Las partículas elementales no obedecen a leyes predeterminadas, por lo que para quien las observa en este estado inicial, resultan parecer la consecuencia de una situación caótica.

Primero Minkowski y luego su alumno Einstein, proponen los campos o planos de referencia inercial. Supongamos que un turista, que se encuentra en Sacrè Coeur, París, pregunta dónde se encuentra el edificio número 10, en la Place de Tête. Para un parisino domiciliado en esa zona le será muy fácil explicar, ya sea topológica o matemáticamente, lo que debe hacer el turista para llegar a esa exacta dirección. Sin embargo, a nadie se le ocurrirá preguntar por esa misma dirección si se encuentra a 1.000 kilómetros de altura. En todo caso preguntará dónde se encuentra Europa. Es decir, los hechos responden a determinados planos de referencia inercial. De aquí surge la relatividad, que en todo caso responde a la referencia asociada al propio observador. Es el mundo de las certezas, donde el movimiento es natural pues lo controlamos por el espacio recorrido, por el tipo de velocidad, el tiempo y la energía empleada. Sin embargo, para la teoría cuántica, no pueden existir planos de referencia, excepto los que devienen de un preciso instante dado. Es el mundo de lo impredecible, donde todo fluye, donde las partículas aparecen y desaparecen, sus movimientos son discontinuos y giran sin cesar en todas direcciones, a veces como tales partículas y a veces como funciones de onda. El espacio y el tiempo se difunden en el mundo de las partículas que circulan sin orden cronológico, se diluyen en campos de magnitudes de onda en su propio y aleatorio espacio y se complejifican en ocasiones, permitiendo la materialización, y en otros instantes invirtiendo el curso del tiempo. Las realidades cuánticas son estados potenciales.

Naturalmente, para un observador es más simple desenvolverse en el mundo de la física clásica; no podría hacerlo en el mundo cuántico, pues este observador necesita de hechos entendibles no desde la acronología. Sin embargo, los fermiones, y especialmente los electrones, sí. Es el denominado acontecimiento de reversibilidad temporal, en el que los sucesos ocurren de una manera tal, que permiten adoptar cualquier dirección en el espacio y en el tiempo. Es por esto por lo que el observador influye definitivamente en la creación de la materia, es el que le aporta conciencia a la realidad. Ello permite las dualidades onda-partícula, cuerpo-conciencia y mente-realidad, aspectos todos ellos, indisociables de la existencia. Es el observador el que crea la realidad del instante presente. Si este instante no es observado se puede generalizar diciendo que se difundirá, extinguiéndose en el tiempo. Por tanto, sólo es la conciencia del observador del suceso lo que le aporta realidad. Pero, ¿y si no se tiene conciencia de ese mismo suceso, existe en realidad?.

Las partículas elementales parecen estar aparentemente alejadas en el espacio-tiempo, pero en realidad, en un dominio subyacente, el dominio implícito cuántico, permite que se encuentren vinculadas entre sí. Según Bohm, este dominio se comporta como el patrón de interferencias de un holograma. En el dominio implícito de las frecuencias no existe el espacio, ni las distancias, y por ello, tal como dice Pribiam: “la separatividad es una ilusión construida en nuestro cerebro”.

Es conocido el problema de “quién mató al gato” propuesto por Schrödinger. Pensó en quién mataría a un gato dentro de una jaula. Colocó comida en un lado y un tóxico mortal en el otro. Por delante puso un líquido radioactivo que desprendería una partícula que podría subir o bajar. Si esta partícula sube, se destapará la comida, pero si baja, destapará el veneno. Se trata de saber que le sucederá al gato. Según la ecuación del autor de este acertijo, nada físico puede decidir la suerte del gato. Al tratarse de una realidad cuántica se encuentra en un estado potencial. Vivo y muerto al mismo tiempo, en dos estados probables, solapados e interpuestos. Sólo la mirada del observador puede determinar el desenlace final.

La realidad cuántica es diferente según se perciba o no, según se observe o no.

Electrones que antes de la percepción del observador eran partículas u ondas indefinidas e impredecibles, se transforman, como consecuencia de esa misma observación, en partículas y ondas de carácter formal, mediante unos fotones invisibles que responden a la llamada del observador como consecuencia de su experimento. El gato vivirá o morirá, concretando uno de los dos estados latentes superpuestos en el momento de la observación. Dependiendo del instante de la observación, Schrödinger lo acariciará o lo enterrará.

A partir de aquí se plantea un gran problema. ¿Qué poder virtual tiene el observador sobre la creación de la realidad?. El conocimiento de los elementos que nos rodean, parece ser el eslabón entre el mundo cuántico y la realidad común. Es decir, la conciencia del observador es la que hace realidad lo observado. Por eso, Prigogine dice: “La realidad se nos revela sólo a través de una construcción activa en la que participamos” . La ciencia, tal como se definió anteriormente, no responde a estas características quedando corta en sus objetivos, ya que su campo de actuación no contempla a la conciencia.

De acuerdo con Louis de Broglie:

“En la dimensión espacio-temporal, todo lo que para cada uno de nosotros constituye el pasado, el presente y el futuro, se da en bloque… Cada observador, a medida que su tiempo va pasando, descubre nuevas porciones de espacio-tiempo que aparecen ante él como aspectos sucesivos del mundo material, aunque en realidad, el conjunto de sucesos que constituyen el espacio-tiempo, existe con prioridad a su conocimiento de ellos”

La reducción de la probabilidad y su conversión en realidad se encuentra asociada a la actividad y “actitud” de los bosones, por lo que pueden ser considerados como los antecedentes primarios de la conciencia (Martínez de la Fe, 1991).

La conciencia está en estado latente en la materia, por lo que no es algo extraño al mundo cuántico: las partículas elementales asocian los cambios en su medio a la interferencia del observador. Existe un diálogo inexplicable entre el hombre y la partícula. Tal vez sea este “… el secreto del Viejo”, tal como dijo Einstein. La conciencia brota a partir de una relación de fotones virtuales coherentemente ordenados en el sistema cuántico del cerebro.

El observador se convierte de esta manera en el espejo de la realidad, que su conciencia debe conocer y asume la dualidad: onda-partícula, cuerpo-conciencia, mente-realidad, aspectos diferentes pero todos ellos integrados en la existencia. Desde la física cuántica se puede afirmar que la realidad no es más que un holograma constituido por partículas elementales ordenadas en nuestro cerebro.

De esta forma, el hombre cuántico se convierte en la gran paradoja de la física de las partículas cuánticas.

Fuente

 

 

3 comentarios en “Fisica Cuántica

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s